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Using the statistical theory of a crystal, we calculate the coefficient of self- 
diffusion in a monatomic molecular crystal for diffusion by the vacancy mechanism 
with a Lennard--Jones (6-12) potential. The results are compared to experiment for 
argon, krypton, and xenon. 

Introduction. Diffusion processes in solids are primarily described using the theory 
of random walks [I] and various simplifying models (see [2, 3] for example). For a cubic 
crystal the coefficient of self-diffusion has the form [I] 

D ---- kR~/6,  ( 1 ) 

where k is a frequency, R is the length of atomic jumps, equal to the distance between nearest 
neighbors on the cubic lattice. 

The jump frequency k is calculated with the help of various models (see [3]). The most 
systematic approach for calculating k is based on statistical mechanics [4]. In [4] the re- 
sults for k calculated according to the dynamical theory [5, 6] were compared to those based 
on equilibrium statistical mechanics [7], and it was shown that the results are equivalent. 
An equilibrium statistical mechanics method for calculating the coefficient of self-diffusion 
somewhat different from [7] was worked out in [4]. In this method, an expression [8] is used 
for the concentration of vacancies, which is obtained using approximations additional to those 
in the calculation of k. 

In the present paper we calculate the coefficient of self-diffusion using the equilibrium 
statistical theory of a crystal with vacancies [9-14] which is based on the statistical method 
of conditional distributions [15]. Using this theory, we can calculate the jump frequency 
of an atom in the crystal without resorting to additional assumptions. A closed system of 
equations is obtained for the determination of k, and hence D. The theory requires only the 
interatomic potential. 

Statistical Method. We consider a system of N identical particles in thermodynamic 
equilibrium in a volume V. Let the Hamiltonian function of the system be 

N N 

= (2) 

Here p~, q~ are the momentum and coordinate, respectively, of atom ~, m is the mass of the 
atom, ~(qp, q~) is the atomic interaction potential, and the prime on the sum means that the 
summation Is carried out for ~ ~ ~. The Gibbs distribution function for a system of N par- 
ticles has the form (see [16]) 

where 

D ~  (Pl, - . . ,  PN, ql . . . .  ' qN) ~ ZNI e x p { - - ~ H N  }, (3) 

ZN ~ f dpl ... ~ dPNf dql... ,I dqNexp{-~H~} (4) 

is the partition function, $ = (kBT) -I, k B is the Boltzmann constant, and T is the absolute 
temperature. 

We divide the total volume V of the system into M = N + No cells of volume w i = V/M 
(i = I, 2,...,M). We consider only those states of the system where each cell is either 
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empty or contains a single particle. Such a set of states, with the help of the integration 
of the Gibbs distribution (3) can be identified with a set of "partial" distribution functions 
[9], describing the probabilities of various states of groups of cells under the condition 
that the remaining cells are either empty or contain a single particle. We use the following 
notation for these functions: each function has indices denoting the number of the cell whose 
state this function describes: if the momentum and coordinate with indices corresponding to 
the given cell number appear as argument of the function, this means that the given cell 
contains a particle, if the function appears only with an index and not the corresponding 
arguments, this means that the cell is empty. 

To illustrate the approach, we consider only the set of functions corresponding to states 
of single cells and pairs of cells: Fi, Fi(Pi , qi), Fij, Fij(Pi, qi), Fij(Pi, qi, Pj, qj)" 
Fi(Pi, qi) is the probability density of observing an arbitrary particle near the point q{~i 
with momentum close to Pi; Fij is the probability that cells i and j are empty; Fij(Pi, qi) 
is the probability of observing a particle near the point q{~m{ with momentum Pi and the 
cell j is empty; finally Fij(Pi, qi, Pj, qj) is the probability density of observing two 
particles near the points q{~wi and qj~j with momenta near Pi and pj, respectively. 

In equilibrium statistical mechanics, the momentum and coordinate distributions are 
independent: 

F,: (Pi, q~) = F (p~) F~ (q~), F,j (p~, q~) = F (p~) F~i (qi), (5 )  

Fij(p~, q~, p~, q~)~ F(pi) F(p~)Fij(qi, q~), 

and 

It then follows that 

F (p~) = (fJ/2:rm)3/~-exp {-- 13p~/(2m)}. 
(6) 

,! dp~F~(p~, q~) -- F, (q~), ~ dp,Fu(p~ ' q~) = F~)(qi), (7) 

dp~ t dp~F~j(p~, qi, PJ, q , ) -  F,j(q~, q,). 

The functions Fi(qi) , Fij(qi), Fij(qi, qj) give the distribution of particles in configuration 
space, and together with the functions Fj and Fij they satisfy the following rigorous prob- 
ability relations which follow from their definition 

F~ + .[ dq~F; (q,) = l, F; --- F;j + j" dqjF;i (q;), 

; (8 )  
Fi (q~) ----- F~j (qi) + .I dqjFH (q~' qi), 

/ 

where the integration goes over the cell volume. This set of relations can be continued to 
include functions describing three, four, and higher numbers of cells. For the single-va- 
cancy mechanism of self-diffusion with which we are principally concerned here, it is suffi- 
cient to use the above equations. 

Using the mean force potentials of [15] and the pseudopotentials of [17, 18], the func- 
tions in (8) can be written in the form 

F~ = (no/Oo) exp {--[~%}, F~ (q0 = (n/Q) exp {--~r (q~)}, 

Fij =- (no/QoY exp {--[3goij), Fij (qi) -- [non/(Q~Q)] exp {--[3q~i~ (q~)}, 

F~j (q~, qj) = (n/Qy exp {--13 [r (q~, qj) 4- ~ j  (q~, qj)]}, (9) 

Qo = exp {--13%}, Q = [ dqi exp {--[~r (q0}. ( 1 O) 

Here no = N0/M is the concentration of empty calls, and n = N/M is the concentration of par- 
ticles. The quantity no is determined from the extremum condition on the free energy 

F ----- M r =  - -  (MIf)[no In (Qo/no) + n In (Q/n)] ( 11 ) 
and has the form 

no = Qo exp {--[~Pw}, (12) 
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where the pressure is 

P =--(af/0m)l~,no. 

Therefore, in order to get the thermodynamic properties of the system in terms of the 
free energy, one must know the quantities ,~p~ and q~i(q~). 

The mean force potentials ~p~(q~), cp'~(q~), q~(q~,q~) and the pseudopotentials (p~ and cP~J 

( 1 3 )  

are sums of the form 

M M 

~,= ~(p,,,, (p,(q,)=~i,,(q,), (14) 

M M 

r Z {P,.Lz, r = 2 qhJ,, (q,), 
( 1 5 )  

l ~ , i  

They satisfy the system of integral equations (8). However, the number of integral equations 
is less than the number of potentials and the system (8) is not closed. In order to close 
the system it is necessary to relate the potentials (15) determining the binary functions 
and the potentials (14) determining the singlet functions. The system can be closed by de- 
composing the potentials (15) into irreducible parts by using the expressions [17, 19] 

~ii, z=r r~u,z(q~)= ~,z(q~)+~j,z+o~j,z (q~), (16) 

qh~,z (qi, qj) = %4 (qi) @ %4 (qJ) @ c~ (qi, qJ)- 

The quantities w are irreducible parts of the potentials. If we put 

~on,l = co~s,~(q~) == ~ou,l(q~, qj) = 0, (1 7) 

which corresponds to neglecting three-particle correlations, then the binary functions are 
related to the singlet functions by 

F~j = exp {l~ [@/j 4- %~,~]} F~F~, 

F~j (q~) = exp {[~ [~, j  (q~) + q~j,~]} Fi (q~) Fj, ( 18 ) 

F~j (q~, qA = exp {[~ [q~i,j (qi) 4- cpJ,~ (@ - -  ~ (q~, @]} F~ (q~) F~ (@.  

A closed system of equations for the potentials can now be obtained by substituting (18) 
into the second and third of equations (8). We obtain 

exp {--I~q~j} =exp {l~q~,~} F~ @ .[.dq~ exp {l~q)~,~ (q~)} F~ (q~), (19) 
J 

exp {--I~q~,y (q,)} = exp {l~q~, z}F~ § .I i dq~ exp {l~ [q~,,(q:) (20) 
- -  ~ (q,, q~)]} Fs (qy), 

where the singlet functions are given by (9). 

The solution of the system of integral equations (19), (20) gives all the functions (9), 
and through the free energy (11), the thermodynamics of the system. 

In the treatment of a crystalline system, the cell of the theory is identified with the 
Wigner--Seitz cell, and the empty cells are interpreted as vacancies (Shottky defects). 

The following function is of direct interest for the discussion below: 

F~ (p~, q~) = [~/(2~xm)] s/~ exp {--l~p~/(2m)} exp {1~ [qh,~ (q~) 4- q~j,~]} F~ (q~) F~. ( 21 ) 

By definition, this function is the probability density of observing a particle at the point 
q~wi with momentum Pi when cell j is empty (contains a vacancy) under the condition that all 
states of the remaining M- 2 cells are taken into account. 

Jump Frequency and the Solution of the System of Integral Equations. Let cell i contain 
an atom and cell j be empty, and assume that these two cells are nearest neighbors on an fcc 
lattice. We choose a coordinate system with the origin at the center of cell i, the z axis 
along the line joining the centers of cells i and j, and the x and y axes perpendicular to 
the z axis. 
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We will assume that the atom in cell i jumps over into the empty cell j if it reaches 
any point on the boundary Sij between the cells and it will thus have a positive z-component 
of the momentum. We average over the states of the other cells. Then the jump frequency is 
given by the expression [4] 

k= X .[ (dp~/m) .((dp~/m) [ (dp~/m)(p~lm) f dq,F~(p~, q,). <22) 
f= l  0 --= --~ Si] 

This expressions differs from the analogous result in [4] in that an isolated vacancy was 
actually considered in [4] and it was assumed that all surrounding cells contain particles, 
whereas according to (22), each of the M-- 2 cells can have finite probabilities of being 
empty or containing a single particle. Thus all of the states of the crystal are taken into 
account in (22) for the jump frequency. 

Using the explicit form of the function Fij(Pi , qi) in (21), the integration with re- 
spect to momentum in (22) can be performed immediately, and we get 

k = z~ (2~[~m) -~ /2  exp {[~r F~ [ dq~ exp {[~q~,~ (q~)} F~ (q~). (23)  
sf] 

In an infinite crystal, the probability that a given cell is empty does not depend on j and 
Fj = no (j = I, 2,...,M). Using this and the explicit form of the function Fi(qi), (23) can 
be written in the form 

k = z~ (2n~m)--1/2n 0 ( ]  - -  nO) exp {[~q~,~} .I dq, exp {8 [q~,: (q~) - -  q~ (q~)]}/f dq~ exp { - - [ ~  (q;)}. (24) 
Siy wi 

This is also an expression for the jump frequency of an atom in an equilibrium crystal 
with a concentration of vacancies equal to no. The integrals in this expression can be cal- 
culated knowing the solution of the system of nonlinear integral equation (]9), (20) which 
can be obtained, for example, by numerical methods [15]. Then the integrals can be done by 
approximate methods, in particular, by the method of Laplace, and then the jump frequency 
and self-diffusion coefficient can be described in the traditional terms of a "preexponen- 
tial factor" and an "activation energy." 

The evaluation of the integrals in (24) must be based, as noted above, on the solution 
of the system of integral equations (20). 

As a first step to obtaining an approximate solution of this system, we use the fact that 
no << I (no ~ 10 -3 to 10 -~ near the triple point), and therefore we can look for the solution 
as a series in no and consider the zeroth approximation [10]. The system (20) then takes the 
form 

exp {--[~q~i,j} ~- ,! dqj exp {[3r (qj)} F~ (qj), (25) 
i 

exp {--[3~i,j (q~)} ----_ .[ dqj exp {8 [q~j,~ (qj) - -  �9 (q~, qj)]} Fj (q j). ( 26 ) 
i 

Equation (26) in this approximation reduces exactly to the equation for an ideal crystal 
with no vacancies. An asymptotic solution can be obtained using the fact that there are 
sharp maxima to the function Fj(qj) at the lattice points. 

We write the coordinate of an atom in cell j in the form qj = nj + uj, where n i is the 
coordinate of the lattice point (center of the cell) and uj is the deviation of the-atom from 
the lattice point and we have u~wj. Then application of the Laplace evaluation of the inte- 
gral in (26) with the inclusion of the first two terms of the asymptotic series gives [20] 

(P~,J (q~) = r (qi, nJ) - -  q~j,, ("~) - -  8 - i  In { 1 + (1/~7) 

• {A%,~(nj)--C"(q~, n j ) - -2~ ' (q~ ,  nj)/1q~--njl+ [~[vqg,~(nj)+ ~b'(q~, nj)(q~--nl)/Iq~--njtp}}. (27) 

In order to calcualte the derivatives of cP~.i(q~) on the right-hand side of this relation, we 
differentiate the potential q~i,j(q~) the necessary number of times and then put qi = ni- We 
then obtain the system of transcendental equations 

q)~,j (n~) ---- [~ (n~j) -- [~-'ln (1 -- 1"~i)]/2, ( 28 ) 
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Ar (n,) = A r  (n~.3 + i~g~,i + [q~a (n~j) - -  215 (K,j + g~,fi~a (n~j))ll[215~r (I - -  F,j)]. (30)  

Here A is the Laplacian, nij = Inj -nil , 

M 

r ~  = [ h ~  (nu) - -  A ~ , j  (n~)-- f~g~fl/(2(r); ~ = ~ h ~ , j  (n~)- ~ 

= ~ ( z , / 3 ) h ~ z ;  g~,j = k~,j + r  (nzj); k. j  = [V~z,j(n3!; (31)  
l ~  l 

r (n~) = r  (n~) + 2 [r (n~) - -  r  (nu)/n~]/n~ , 

r (nu) = r @ 4r  (nts)/nu; K~ = [r -]- 2 [ r  (n~)/nu] ~, (32) 

where we use hot to denote A~i,~(n0 when cell j is located on the coordinate sphere ~ with 
respect to cell i. Finally z~ is the coordination number. 

Evaluating the integral in (25) to the same accuracy, we obtain the following expression 
for the pseudopotential q0ij 

~z,~ = -- q~ (nu)/2 + ]3 -~ In {(1 -- r~:)~/~/[1 + (A~,j (n3 + [3k~,i)/(2a)] }. (33) 

Then for the integral in the denominator of (24) we have 

; dqt exp {--15q0~ (q~)} = [2n/([50)] ~/~ exp {--15q~t (n~)}. (34) 

i 

We now consider the evaluation of the surface integral in (24). Here we use the fact 
that an explicit form of the integrand is known; it is given by (27). Analysis of the be- 
havior of this function on the surface where the integral is to be evaluated (the boundary 
between the cells) shows that the function q)~(q~-)--q~, ~(q~) has a minimum at the point s i = 
(n i --nj)/2. This point lies midway between the centers of cells i and j. In our coordinate 
system, this point is given by s i = si(0 , 0, R/2). The minimum of the function qq(qO--~i.J(qO 
corresponds to the maximum of the integrand, and this we can use the Laplace method to evalu- 
ate the surface integral. We then obtain 

dq~dq~ exp {15 [qh,~ (q~)-- qot (q~)]} = [2zt/(15as)] exp {15 [qh j (st) - -  T~(s~)]}, (35) 
St) 

where 

o,  = (1/2) (V~ + V~y)[q~ (s3 - -  q~,j (s3]. (36)  

The second derivatives of the potentials at s i appearing here can be evaluated directly 
by differentiating expression (27). 

Coefficient of Self-Diffusion. Comparison of Calculated and Experimental Results. Using 
our result for the jump frequency (24) we can write 

k ---- vexp {--15E}, (37) 

where the so-called effective frequency is 

v = Zl (~ /m) ' /2  ((y/2~(Ys), (38) 

and 

E = cpj + Pw + [Wz (s3 -- ~ (n3] -- [~i,~ (s3 + 'p.i,d (39) 

is a quantity with the dimensions of energy. We analyze the terms in this expression: 

g~ = ~j + Pw,  (40) 

the Gibbs potential for the formation of vacancies, and 

Em = qol (sl) -- r (ni) (41 ) 

can be interpreted as a vacancy migration energy; it is the difference of the mean force 
potentials Ti(qi) acting on an atom in cell i at the boundary of the cells (at the saddle- 
point s i) and at the lattice point n i. The quantity Em, as can be seen by comparing with 
the rigorous expression for the free energy (11), cannot be given a thermodynamic interpre- 
tation, as in the theory of absolute reaction rates [21]. 
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Fig. I. Dependence of the effective frequency on tem- 
perature [calculated from Eq. (38)] for P = O. 

Fig. 2. Dependence of the diffusion activation energy 
on temperature [calculated from Eq. (39)] for P = O. 

The quantity 

AEm ---- qh,J (si) -~ tD,~ ( 4 2 )  

is a correction to the migration energy due to atom-vacancy correlations. Indeed, the func- 
tion Fij(qi), determining this correlation, can be represented in the form 

Fii (qi) = [1 -t- g~j (qi)] Fi (qi) Fj, (43)  

where 

g~j (qi) = exp {[3 [~id (qi) q- ~J,~]} -- I (44) 

is a factor characterizing the atom-vacancy correlations (not to be confused with the corre- 
lation coefficient f, describing the degree of independence of the migration of an atom; see 
below). If gij(qi) is zero at the saddle-point 

giJ (S~) = O, (45) 

then 

Fij  (si) ~ Fi (st) Fj .  ( 4 6 )  

This means that the probability of simultaneously observing an atom at the point s i and a 
vacancy in cell j is equal to the product of the corresponding singlet probabilities. But 
it then follows at once from (45) and (46) that AE m = 0. Thus, &E m does represent a corre- 
lation correction to the migration activation energy. 

Therefore, the self-diffusion coefficient of vacancies can be written in the form 

D = (vR2/6) exp {--[~E}, (47) 

where 

E = go + E,~ - -  AE m. ( 4 8 )  

In comparing the calcualted self-diffusion coefficient with experiment, it must be noted 
that the self-diffusion coefficient of vacancies is not actually measured in experiment, but 
that of tracer atoms D*, and this is related to D via the correlation coefficient 

D* = f D .  ( 4 9 )  

For an fcc lattice, f = 0.78146 [2]. 

The numerical calculations were performed for a crystal of particles interacting with the 
Lennard--Jones (6-I 2) potential: 

q~ (r) = 4s [(rotr) ~= - -  ( ro l r )% ( 5 0 )  

All energies expressed in units of the potential well depth ~, lengths in units of r0, 
volumes in units of r30, pressures in units of ~/r03. The quantities ~mm/zl, E, In~m-mD* were 
calculated (Figs. I through 4). In this way, the computational results are dimensionless and 
valid for all r0 and g. 
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Dependence of the frequency and diffusion ac- 

I 

tivation energy on pressure for e = 0.5 (curves I and 2) 
and @ = 0.7 (curves 3 and 4). 

Fig. 4. Dependence of the coefficient of self-diffusion 
on the reciprocal of the temperature: I) calculated ac- 
cording to (47); the other curves are experimental; 2) 
Ar [22]; 3) Xe [23]; 4, 7) Ar [24]; 5) Ar [25]; 6) Kr 
[26]; 8) Kr [27]. 

We see from Fig. I that the dependence of ~ on T is nonlinear. 

In the region 0 ~ 0.4, the energy depends almost linearly on temperature (Fig. 2), which 
supports cutting off an expansion of the energy in a series in the temperature at the linear 
term [4]. However, at low temperatures other terms in the expansion must be taken into ac- 
count. 

In Fig. 4 we show the measurements of the self-diffusion coefficient in the rare gas 
crystals [22-27]; the experimental values are shown in reduced units r0(s/m) I/2 as a function 
of the reciprocal of the temperature. Curve I in Fig. 4 was calculated according to (47) and 
shows a weak convexity. The experimental results for the self-diffusion coefficient were 
analyzed with the help of the Arrhenius formula 

D = Do exp {--~H},  (51 ) 

where Do and H are constants independent of the temperature, and chosen such that the experi- 
mental data best approximates a straight line when plotted using the variables InD and B. 
Although in these variables the results from (47) display a nearly linear dependence, calcu- 
lations of ~ and E (Figs. I and 2) show that they cannot be considered as constants indepen- 
dent of temperature. 
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CARBON COMBUSTION IN CYLINDRICAL CHANNELS WITH EDDY WASHING OF THE WALL 

I. P. Basina and A. F. Katsovich UDC 662.61.612.3 

The article presents the experimentally determined dependences of carbon combustion 
on the wall of a model of a cyclone chamber and of the air excess number at the 
outlet from the model on a number of design and regime factors. 

It is known [I, 2] that the combustion process of a carbon channel is the most inter- 
esting problem (the so-called "internal" problem) in studying heterogeneous combustion of 
carbon; its importance does not only concern the development of the theory of this process, 
it also has a direct bearing on the operation of real heating and technological installations. 
Of special interest is the investigation of the regularities of the burning of carbon in a 
cylindrical channel with rotary (cyclone) motion of the stream. In this case there is full 
analogy with the process occurring in cyclone furnaces where part of the fuel is burned after 
separation on the chamber wall [3]. If we take into account the known features of the in- 
teraction of the separating particles with the slag film covering the furnace wall [4] and 
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